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* Geostationary Operational Environmental Satellite

O Advanced Baseline Imager (ABI)
<> 16 spectral bands (Vis/WV/IR)

< Resolution: 5-15 min, 0.5-2 km

0 Geostationary Lightning Mapper (GLM)
<> Total lightning (in-cloud, cloud-to-ground)
< Day and night detection
< Resolution: 8 -14 km

O High-impact weather
O Precipitation (water vapor, clouds)
O Air pollution (dust, SO2, O3)

U Increased spatiotemporal resolution

.............

GOES-R




; otivation-2: High-impact weather

* Severe weather
<> Thunderstorms
< Tornadoes
< Rainfall
<> Hail
<> Flash floods

Mississippi tornado (04/20m)

* Tropical cyclones
< High winds
< Storm surge
< Rainfall
< Floods
< Tornadoes

< Rip currents

Hurricane Andrew (1992) - wind damage 4



. Motivation-2: Higﬁ-impact weather

* Clouds: information to be utilized

< Typically associated with high impact weather
< Can produce extreme rainfall and floods

<> High spatiotemporal resolution (microphysics)
< Radiation

PERTCRS
SN,

Hurricane Dora (2012) - GOES

Improving analysis and
prediction of clouds is
challenging, but
fundamentally important

Supercell thunderstorm cloud (2010) - NASA



Motivation-3: All-sky satellite radian_gﬁ@}RA
assimilation

* Satellites observe clouds

< Visible, Water-vapor, Infrared, Microwave

° Prediction of high impact weather relies on resolving cloud processes
< Cloud microphysics
<~ Precipitation

* Current operational weather prediction mostly relies on clear-sky
radiance assimilation

< Simpler algorithm, computationally efficient

* Observation of clouds can bring new information relevant for high-
impact weather

< Constrain microphysics
< Improved cloud representation benefits precipitation and radiation processes
< Warn-on-forecast

< TC track and intensity
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Re-development of the TS Erin (2007): Distribution of AMSU-B radiance data in the
NCEP operational data stream: (a) all observations, (b) accepted observations after
cloud clearing. Data are collected during the period 15-18Z, August 18, 2007. Note
that almost all observations in the area of the storm got rejected by cloud
clearing. (from Zupanski et al. 2011, J. Hydrometeorology)

Valuable information is lost due to cloud clearing




_Satellite observations that can bring new
information for high-impact weather

Microwave radiances
- penetrate clouds, can “see” inside
- potential benefit for improving intensity of storms

Infrared radiances
- imager cannot penetrate clouds, can “see” cloud tops
- potential benefit for improving location of the storm

Spaceborne lightning
- indirect measurement of weather activity
- location and intensity of storms

Spaceborne radars
- can penetrate clouds
- high resolution



> —— -\\
rowave satellite information:

Channel 1: 23.8 GHz Channel 3: 53.6 GHz Channel 9: 57.3 GHz
20 May 2013, 12z 20 May 2013, 12z 20 May 2013, 12z

Brightness Temperature (K) NOAA-18 AMSU-A 20130520_12z Brightness Temperature (K) NOAA-18 AMSU-A 20130528_12z Brightness Temperature (K) NOAA-18 AMSU-A 20130528_12z

** Not Assimilated  QC: All w/ Gross Tb Check e572p5_fp ** Assimilated QC: All w/ Gross Tb Check e572p5_fp ** Not Assimilated  QC: All w/ Gross Tb Check e572p5_fp
B + - « 120

120
—

Channel 001 Freq 23.8 GHz Nobs 12183 Avg. 211.105 Std. 44.531 Channel 005 Freq 53.6 GHz Nobs 12220 Avg. 247.117 Std. 10.024 Channel 009 Freq 57.3 GHz Nobs 12220 Avg. 210.477 Std. 8.028
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Weighting function: Surface Weighting function: 650 hPa Weighting function: 92 hPa

Complementary information from surface, lower and upper troposphere .




East

ared satellite information: GOES

-

Visible (4 km)

30 May 2013, 13:15z
Water vapor (4 km)

30 May 2013, 13:15z

Thermal infrared (4 km)
30 May 2013, 13:15z

Additional information from multiple channels

10
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[EATELLITE. £11 98 10 11 1003Z 35 GHI M (Dtlghtn.sl mltux'.) SATELLITE S 98 10 11 10252
| WARNING ZEB (IW) 9.1011 0600 10 78 136.0

INFRARED
WARNING I 13W) 981011 0600 10 ¥ 136 0
NRL Monterey Code 7 NRL Monterey 7541

Typhoon Zeb (1998):

(MW) Dark blue marks a developing eye at the center of circulation. The greens and
yellows in the spiral bands represent scattering signatures from precipitation-size ice
particles above the freezing level.

(IR) Shows the Cirrus clouds and cumulonimbus that covers most of the storm. It shows a
portion of the eye. However, the northern part of the eye is covered by cirrus clouds.

[Navy Research Lab Monterey, Marine Meteorology Division]. -



Lightring and radars—— —

Lightning:
Hurricane lke (2008)

CloudSat radar: Chicago flooding (April 2013)

Moderate Rainfall Thunderstorms
oy ‘% ﬂf’"

2013 Apr 17 (107) 18:00:47 UTC | 1A-AUX | Granule 37087 20 Time 19:04:35 19:01:23 | Lat 51.5 40.1 | Lon -89.8 -85.6 CIRA CloudSat DPC

Detailed information about the storm, clouds, and precipitation

12



Challenges of all-sky satellite raMM

~——assimilation for high-impact weather

* Nonlinearity and non-differentiability

< Microphysical processes
<> Radiative Transfer (RT) model

Forecast error covariance

< Flow-dependent, cross-variable correlations, microphysics, dynamics

Bias correction

< Predictors for cloudy radiance bias correction

Computational limitations
< High-dimensional state vector for cloud-resolving data assimilation

<> Additional RT model calculations (e.g., scattering)

Other relevant issues
< Correlated observation errors
<> Non-Gaussian errors

13



~_Nenftinearity: Impaét of minimi

-

n all-sky

MW radiance DA: Hurricane Danielle (2010)

Assimilation of AMSU-A all-sky radiances with NOAA HWRF-MLEF (9 km)
TC circulation represented by total cloud condensate (g/kg)

Solid lines represent the MSLP (hPa)

DA cycle 8 valid 1200 UTC 26 August 2010

Precipitation rate (mm/h) One minimization iteration Two minimization iterations
at 1311 UTC 26 Aug 2010
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(from M. Zhang et al. 2013, Mon. Wea. Rev.)

Additional minimization iterations may be beneficial

14



£
we !

Fﬁst error covariance

P dd P dc
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P, Correlations between dynamical variables

P_.: Correlations between cloud (microphysical) variables

P, : Cross-correlations between dynamical and cloud variables

Only P, is well known
Correlations between microphysical variables not well known
Even less known correlations between dynamical and microphysical variables
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mservaﬁdh of cloud snow at 650 hPa:
Vertical response

(a) Cloud snow at 34N (b) Cloud rain at 34N

IRA

Cov, QSNOW USNQW, lat=33.65 Cov, QSNOW QRAIN, lat=33.65
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Flow-dependent and non-centered responses have to be created

86,14
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Data assimilation algorithm: /@M

“Maximum Likelihood Ensemble Filter (MLEF)

= A hybrid between EnKF and variational methods
- iterative minimization (variational)

- multiple realizations of model and observation operators for uncertainty
(ensemble)

= Full-rank or reduced-rank

= Deterministic first guess forecast

= Analysis is the maximum of a posterior probability density function
= Nonlinear analysis solution by an iterative minimization

= Improved minimization efficiency by an implicit Hessian preconditioning

References:
Zupanski 2005 (MWR)
Zupanski et al. 2008 (QJRMS)

17



P @

, Generalization of Kalman Filter to include
nonlinear model operators: MLEF Forecast

B=MB il ol i feipl Ml M

= In KF, the forecast error column is a forecast of the analysis error column
= Since { VG o p,fj} spans the analysis uncertainty subspace, one
can say that uncertainty is transported in time by a linear model A/

Generalize KF to include nonlinear forecast model:

Transport uncertainty in time by a nonlinear model 9/

x! = m(x) xif = M(x* + p)

pl.f =xl.f—xf = M(x" + p)— M(x)

18



. _GIRA

~Generalization of Kalman Filter to include
nonlinear observation operators: MLEF Analysis

In standard KF, the analysis is obtained by minimizing a quadratic cost function
(i.e. linear observation operators)

Generalize KF to include nonlinear observation operators:

= Nonlinear observation operators require a robust
and sophisticated minimization, so use the best
applicable minimization method

=  Since the minimization is critical, build data
assimilation around minimization

J(x)= %(x — xf)T Pf'1 (x — xf) + %(y — K(x))T R (y — K(x))

19



messian preconditioning important?

x-x, =P (I+P "K' R'KP")"z

%, Physical space Preconditioning space

s R

J=const.

———

O Fast convergence from arbitrary initial state
U Impacts dynamical balance in multivariate DA

20
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ITERATIVE
MINIMIZATION

MitEFflowchart
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—
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PWDeutar MLEF ———

/Observation module: \
- Transform/interpolate from model to
observations

- Read observations
- Output observation info: increments,

\ errors, ... /

22



Quantitying satellite-infermation usinf,V@}RA

Shannon information measures

Entropy Change of entropy due to observations

H{X} =~ p(0)log(p(x))dx AH = H{X}-H{X Y}

* Gaussian pdf greatly reduce the complexity since entropy is related to covariance

Change of entropy / degrees of freedom for signal (DFS)

AH = DFS = trace|I - P,P;"|

In ensemble DA methods DFS can be computed exactly in ensemble subspace:

DFS = trace[(] + ZTZ)'IZTZ] Z=R"HP" DFS = ,

Since eigenvalues of the matrix Z’Z are a by-product of assimilation, the flow-
dependent DFS can be computed

23



GIRA

"All=sky microwave radiance assimilation:
Tropical Cyclone Core applications

°* Model: NOAA HWREF (operational in 2011, 27km/gkm)

* Results for TC core area (inner nest) at 9 km resolution

° Observations: AMSU-A all-sky radiances, Channels 1-9 and 15 assimilated
* Data assimilation interval: 6 hours

°* Number of ensembles: 32

* Hurricane Daniele (2010)

° Bias correction from clear-sky GSI output

* From M. Zhang et al. (2013, Mon. Wea. Rev.)

24



_ Radiance bias correction and quality control
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_Hurrieane Danielle”

J}-

All- sky AMSU-A information content (DFS)

Cycle 1 Cycle 3 Cycle 5 Cycle 7

ASR

Cloudy radiance observations add new information throughout the hurricane development

26



- Hurricane Danielle
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(a) Enhanced Infrared (IR) Imagery at 1145 UTC 26 Aug 2010 (Unit: K); (b) AMSU-retrieved
precipitation rate map from MetOp-A at 1311 UTC 26 Aug 2010 (Unit: mm h-1). Distribution of the
6-h forecast of the total cloud condensate (Colored; Unit: Kg m-2) at DA cycle 8: (c) the CTL

experiment, and (d) the ASR experiment, superposed with mean sea-level pressure and 10-m
above ground wind barbs from, valid at 1200 UTC 26 Aug 2010.
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BEST ---CTL —ASR

Hurricane Danielle (2010): Time series of the minimum sea level pressure (hPa)
for NHC best track data (thick grey line) and MLEF-HWRF experiments ASR (solid)
and CSR (dashed) between 1800 UTC 24 Aug and 1800 UTC 26 Aug 2010.

28



~ All-sky microwave radiance assimi TUF/@

NASA Global Precipitation Mission - GPM: Downscaling
satellite precipitation information using ensemble data
assimilation (with Sara Zhang and Arthur Hou, NASA GSFC)

* Provide improved precipitation information for hydrology models
* Cloud-scale data assimilation with NASA WRF model (27-9-3 km)
° From S. Zhang et al. (2012, Mon. Wea. Rev.)

Surface precipitation short-term forecasts verification
(accumulated during 15-22 Sep 2009 in the southeast US flood region)

Ground-based Verification 3DVAR, no AMSR-E,TMI EDAS, with AMSR-E, TMI
(NOAA Stage IV data) (WRF-GSI) (WRF-EDAS)

29



"All=sky infrared radiance assimilation:

Tropical Cyclone Core applications

° Model: NOAA HWREF (operational in 2011, 27km/gkm)

* Results for TC core area (inner nest) at g km resolution

° Observations: SEVIRI all-sky radiances [10.8 um - proxy for GOES-R ABI)
* Data assimilation interval: 1 hour

°* Number of ensembles: 32

* Hurricane Fred (2009)

* No bias correction (advantage of clear-sky GSI correction not obvious)

* To be submitted for publication by M. Zhang et al.

30
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_ Hurricane Fred (2009): Analysis

Total cloud condensate (cwm)
Valid 0600 UTC 9 Sep 2009

Control experiment

All-sky radiance assimilation  Verification: AMSU-A NOAA-16

180 16N
15N 15N 15N
‘
14N 4N 14N "® =
1 °
13N 13N and® o
! 0
12N 12N N e e,
e Kl
1IN TN IETE IR A
" ol
1ON-—7 ‘ i T i i NS W sw stw oW 29w 2 vl T
34W 33W 32w 3IW 30W 20w 2 34W 33W 3ZW 3IW  30W  29W  28W

retrieved cloud liquid water

Assimilation of all-sky infrared radiance is able to improve clouds in TC core

31



- Hurrieane Fred (2009):- /@m

~ All-sky SEVIRI information content (DFS)

Degrees of Total cloud

Tb observations i
Freedom for Signal condensate (cwm)

,.
&=
»

QS

('
¢

Valid 1800 UTC 08 Sep 2009

SEVIRI infrared cloudy radiance observations adds new information

32
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w(u2009): 21-hour forecast

Total cloud condensate (cwm)
Valid 0300 UTC 10 Sep 2009

Verification: Seviri
radiance observations

Control experiment All-sky radiance assimilation

Assimilation of all-sky infrared radiance improves the forecast of clouds in TC core area

33



We Fred (2009):

SEVIRI and AIRS SFOV (q,T) in HWRF outer
domain

Information content - DFS

MSG SEVIRI MSG SEVIRI MSG SEVIRI
only and AIRS q and AIRS T
profile profile
;ﬂ R 1] : ‘ “'\, \ |‘:
h\‘:'. ' ' "
. L :
4 - 4
" -
. % / "-,5[

In outer domain (with less clouds) DFS shows more benefit from AIRS SFOV
temperature data than from specific humidity data
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_Lightning data assimilation:

Severe weather applications

°* Model: NOAA WRF-NMM (27km/gkm)

° Results for the inner nest at g km resolution

* Observations: WWLLN [proxy for GOES-R GLM)

* Data assimilation interval: 6 hours

°* Number of ensembles: 32

* Tornado outbreak over Southeast US in April 2011

* From Apodaca et al. (2013)
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Weather outbreak over the /@M

~ southeastern US on April 25-18, 2011

Model domain and tornado reports for April 27, 2011

" SPC Storm Reports for 04/27/11

Map up,

TORNADO REPORTS.. (292 N7 AN RS
@ WIND REPORTSMI..... (438/) .
v HAIL REPORTSAG..... (207§ %

TOTAL REPORTS....... (937) > N
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Lightning observation operator

WWLLN can observe only cloud-to-ground (C-G) flashes

Regression between lightning flash rate and model variables
- Best regression suggests cloud ice and vertical graupel flux
(McCaul et al. 2009)

WRF-NMM microphysics (Ferrier) does not predict cloud ice:
- Need to rely on less accurate regression: maximum vertical updraft

Present:
- Use max vertical updraft and WWLLN

Future:
- Include more complex microphysics to improve obs operator
- Use better GLM proxy observations (C-G and intra-cloud)
- Increase the resolution to 1-3 km

37
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Lightning data assimilation with MLEF:
Single observation experiment

Analysis response to a single observation of flash rate in a 6-hour interval

WI nd Increment Te mbpckg!ragir&s Eng r!;tf?;SUth) ;)B%i‘f[;(;'m!lgisc—[agmg I;!;I!:a)

wind diff analysis—background (m/s) at z=9 (~850hPa) t diff analysis—

:_ ﬁf’%

GrADS: COLA/IGES

Assimilation of lightning observations impacts all model variables
and improves storm environment conditions
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Im‘%ation content of Iightning//@lRA

~—observations: DFS

2011_04_27-00:00:00 2011_04_27-12:00:00 2011_04_28-00:00:00
Cycle 1 Cycle 3 Cycle 5

Rodgers Information Content

Rodgers Information Content Rodgers Information Content

QWWLLN 0bservat|ons

\jﬁ” ‘

Time and flow dependent information added by assimilating lightning data
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~__Impact on storm envi

Analysis increments: x*

Wind increment at 850 hPa
Valid 04/28 at 00UTC

Analysis-Background Winds [LIGHT] at 850mb

94°W  92°W  90°W 88°W 86°W 84°W 82°W 80°W

92°W  90°W  88°W  86°W  84°W  82°W

Wind (m sec-1)
—>

—x/

Vorticity increment at 850 hPa

Valid 04/28 at 00UTC

Analysis - Background ABS Vorticity [LIGHT] at 850mb
94°W  92°W 90°W 88°W 86°W 84°W 82°W 80°W
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00004 00003  -0.0002 00001 00001 00002 00003  0.0004

Background CAPE
Valid 04/28 at OOUTC

Background CAPE [LIGHT] (J kg-1)

94°W  92°W 90°W 88°W 86°W 84°W 82°W 80°W

38°N —
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345N -
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30°N —g -

28°N
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92°W  90°W  88°W  86°W  84°W  82°W
CAPE (J kg-1)

Nt DEEEN

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500

region of large CAPE

Lightning data assimilation increases the advection of low-level vorticity into the
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~—New direction: High-impact weather

° Combine all observations in applications to TC/severe weather:
- All-sky infrared radiances(GOES-R ABI)
- Lightning (GOES-R GLM)
- All-sky microwave radiances
- AIRS/IASI (sounder)
- NOAA operational observations (GSI)

* Examine the impact of WV channels for TC genesis

* Assess the value of combined observations in regional hybrid GSI

41



/New dire

* Extend utility of GOES-R data to
chemistry:

- Improve predictions of high-impact
weather and air-quality

- WRF-CHEM model: coupled
atmosphere-chemistry

- All-sky ABI radiances and GLM flash
rates contain a valuable information
about NOx, O3, and aerosols

Extend utility of GOES-R data to land-
surface and coastal ocean

- Focus on improving predictions of hurricane
landfall, storm surge

- coupled atmosphere-ocean-land-hydrology
model

- add ocean observations (HF radar,

Lagrangian data, altimeter, satellite)
42



P New di

* Extend MLEF to include static/variational and ensemble error covariances

ens static

Hybrid ensemble-variational error covariance

Requirement: Approximate variational covariance

A single DA system (no separate variational and ensemble algorithms)

Maintain optimal Hessian preconditioning (e.g., observation component)

* Improve robustness of the system
e Efficient use of all observations

.
Variable 1 Variable 2
Vertical response y=063 name=yyy
Vertical response y=063 name=xxx
True static
o1 02 03 o4 05 06 07 08 03 |
Vertical response y=063 name=xxx Vertical response y=063 name=yyy
B
pt
2
MLEF static E
s
0 2
.
’ ‘°
s
E T O T T T ] E
07 08 08 1 e NI T R T s
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* Continue high-impact weather DA applications
- Increase resolution to 1-3 km

- Assimilate all available observations

* Prepare for GOES-R launch
- simultaneous assimilation of ABI and GLM

- use GSI/hybrid GSI as a framework to access observations

° Expand applications to chemistry, land-surface, carbon, ocean

- important new applications
- extend the utility of GOES-R data

* Further development of hybrid variational-ensemble systems

- hybrid forecast error covariance with optimal Hessian
preconditioning

—Future @m
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Thank you!
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